Abstract:
We show that the problem of finding an approximate Nash equilibrium with a polynomial precision is PPAD-hard even for two-player sparse win-lose games (i.e., games with {0,1}-entries such that each row and column of the two n×n payoff matrices have at most O(log n) many ones). The proof is mainly based on a new class of prototype games called Chasing Games, which we think is of independent interest in understanding the complexity of Nash equilibrium.

Published Date: 2018-02-08
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.
DOI:
10.1609/aaai.v32i1.11439