Abstract:
Action abstractions restrict the number of legal actions available during search in multi-unit real-time adversarial games, thus allowing algorithms to focus their search on a set of promising actions. Optimal strategies derived from un-abstracted spaces are guaranteed to be no worse than optimal strategies derived from action-abstracted spaces. In practice, however, due to real-time constraints and the state space size, one is only able to derive good strategies in un-abstracted spaces in small-scale games. In this paper we introduce search algorithms that use an action abstraction scheme we call asymmetric abstraction. Asymmetric abstractions retain the un-abstracted spaces' theoretical advantage over regularly abstracted spaces while still allowing the search algorithms to derive effective strategies, even in large-scale games. Empirical results on combat scenarios that arise in a real-time strategy game show that our search algorithms are able to substantially outperform state-of-the-art approaches.

Published Date: 2018-02-08
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.
DOI:
10.1609/aaai.v32i1.11432