Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
EAAI18 - Full Papers
Downloads:
Abstract:
As research becomes more and more data intensive, managing this data becomes a major challenge in any organization. At university level there is seldom a unified data management system in place. The general approach to storing data in such environments is to deploy network storage. Each member can store their data organized to their own likings in their dedicated location on the network. Additionally, users tend to store data in distributed manner such as on private devices, portable storage, or public and private repositories. Adding to this complexity, it is common for university departments to have high fluctuation of staff, resulting in major loss of information and data on an employee’s departure. A common scenario then is that it is known that certain data has already been created via experiments or simulation. However, it can not be retrieved, resulting in a repetition of generation, which is costly and time-consuming. Additionally, as of recent years, publishers and funding agencies insist on storing, sharing, and reusing existing research data. We show how digital preservation can help group leaders and their employees cope with these issues, by introducing our own archival system OntoRAIS.
DOI:
10.1609/aaai.v32i1.11395
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.