Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Computational Sustainability and Artificial Intelligence
Downloads:
Abstract:
The learning problem for Factorial Hidden Markov Models with discrete and multi-variate latent variables remains a challenge. Inference of the latent variables required for the E-step of Expectation Minimization algorithms is usually computationally intractable. In this paper we propose a variational learning algorithm mimicking the Baum-Welch algorithm. By approximating the filtering distribution with a variational distribution parameterized by a recurrent neural network, the computational complexity of the learning problem as a function of the number of hidden states can be reduced to quasilinear instead of quadratic time as required by traditional algorithms such as Baum-Welch whilst making minimal independence assumptions. We evaluate the performance of the resulting algorithm, which we call Variational BOLT, in the context of unsupervised end-to-end energy disaggregation. We conduct experiments on the publicly available REDD dataset and show competitive results when compared with a supervised inference approach and state-of-the-art results in an unsupervised setting.
DOI:
10.1609/aaai.v32i1.11342
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.