Abstract:
We propose Unicoder-VL, a universal encoder that aims to learn joint representations of vision and language in a pre-training manner. Borrow ideas from cross-lingual pre-trained models, such as XLM (Lample and Conneau 2019) and Unicoder (Huang et al. 2019), both visual and linguistic contents are fed into a multi-layer Transformer (Vaswani et al. 2017) for the cross-modal pre-training, where three pre-trained tasks are employed, including Masked Language Modeling(MLM), Masked Object Classification(MOC) and Visual-linguistic Matching(VLM). The first two tasks learn context-aware representations for input tokens based on linguistic and visual contents jointly. The last task tries to predict whether an image and a text describe each other. After pretraining on large-scale image-caption pairs, we transfer Unicoder-VL to caption-based image-text retrieval and visual commonsense reasoning, with just one additional output layer. We achieve state-of-the-art or comparable results on both two tasks and show the powerful ability of the cross-modal pre-training.

Published Date: 2020-06-02
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved
DOI:
10.1609/aaai.v34i07.6795