Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Computational Sustainability and Artificial Intelligence
Downloads:
Abstract:
The heavy burdens of computation and off-chip traffic impede deploying the large scale convolution neural network on embedded platforms. As CNN is attributed to the strong endurance to computation errors, employing block floating point (BFP) arithmetics in CNN accelerators could save the hardware cost and data traffics efficiently, while maintaining the classification accuracy. In this paper, we verify the effects of word width definitions in BFP to the CNN performance without retraining. Several typical CNN models, including VGG16, ResNet-18, ResNet-50 and GoogLeNet, were tested in this paper. Experiments revealed that 8-bit mantissa, including sign bit, in BFP representation merely induced less than 0.3% accuracy loss. In addition, we investigate the computational errors in theory and develop the noise-to-signal ratio (NSR) upper bound, which provides the promising guidance for BFP based CNN engine design.
DOI:
10.1609/aaai.v32i1.11334
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.