Proceedings:
No. 1: Thirty-First AAAI Conference On Artificial Intelligence
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 31
Track:
AAAI Technical Track: Vision
Downloads:
Abstract:
Graph matching problem that incorporates pair-wise constraints can be formulated as Quadratic Assignment Problem(QAP). The optimal solution of QAP is discrete and combinational, which makes QAP problem NP-hard. Thus, many algorithms have been proposed to find approximate solutions. In this paper, we propose a new algorithm, called Nonnegative Orthogonal Graph Matching (NOGM), for QAP matching problem. NOGM is motivated by our new observation that the discrete mapping constraint of QAP can be equivalently encoded by a nonnegative orthogonal constraint which is much easier to implement computationally. Based on this observation, we develop an effective multiplicative update algorithm to solve NOGM and thus can find an effective approximate solution for QAP problem. Comparing with many traditional continuous methods which usually obtain continuous solutions and should be further discretized, NOGM can obtain a sparse solution and thus incorporates the desirable discrete constraint naturally in its optimization. Promising experimental results demonstrate benefits of NOGM algorithm.
DOI:
10.1609/aaai.v31i1.11210
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 31