Proceedings:
No. 1: Thirty-First AAAI Conference On Artificial Intelligence
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 31
Track:
Main Track: Search and Constraint Satisfaction
Downloads:
Abstract:
We analyze to what extent the random SAT and Max-SAT problems differ in their properties. Our findings suggest that for random k-CNF with ratio in a certain range, Max-SAT can be solved by any SAT algorithm with subexponential slowdown, while for formulae with ratios greater than some constant, algorithms under the random walk framework require substantially different heuristics. In light of these results, we propose a novel probabilistic approach for random Max-SAT called ProMS. Experimental results illustrate that ProMS outperforms many state-of-the-art local search solvers on random Max-SAT benchmarks.
DOI:
10.1609/aaai.v31i1.11135
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 31