Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
Track:
AAAI Technical Track: Vision
Downloads:
Abstract:
Understanding questions and finding clues for answers are the key for video question answering. Compared with image question answering, video question answering (Video QA) requires to find the clues accurately on both spatial and temporal dimension simultaneously, and thus is more challenging. However, the relationship between spatio-temporal information and question still has not been well utilized in most existing methods for Video QA. To tackle this problem, we propose a Question-Guided Spatio-Temporal Contextual Attention Network (QueST) method. In QueST, we divide the semantic features generated from question into two separate parts: the spatial part and the temporal part, respectively guiding the process of constructing the contextual attention on spatial and temporal dimension. Under the guidance of the corresponding contextual attention, visual features can be better exploited on both spatial and temporal dimensions. To evaluate the effectiveness of the proposed method, experiments are conducted on TGIF-QA dataset, MSRVTT-QA dataset and MSVD-QA dataset. Experimental results and comparisons with the state-of-the-art methods have shown that our method can achieve superior performance.
DOI:
10.1609/aaai.v34i07.6766
AAAI
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved