Proceedings:
No. 1: Thirty-First AAAI Conference On Artificial Intelligence
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 31
Track:
Student Abstract Track
Downloads:
Abstract:
An intriguing application of transfer learning emerges when tasks arise with similar, but not identical, dynamics. Hidden Parameter Markov Decision Processes (HiP-MDP) embed these tasks into a low-dimensional space; given the embedding parameters one can identify the MDP for a particular task. However, the original formulation of HiP-MDP had a critical flaw: the embedding uncertainty was modeled independently of the agent's state uncertainty, requiring an arduous training procedure. In this work, we apply a Gaussian Process latent variable model to jointly model the dynamics and the embedding, leading to a more elegant formulation, one that allows for better uncertainty quantification and thus more robust transfer.
DOI:
10.1609/aaai.v31i1.11065
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 31