Proceedings:
No. 1: Thirty-First AAAI Conference On Artificial Intelligence
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 31
Track:
AAAI Technical Track: Robotics
Downloads:
Abstract:
This paper addresses the task of unsupervised feature learning for three-dimensional occupancy mapping, as a way to segment higher-level structures based on raw unorganized point cloud data. In particular, we focus on detecting planar surfaces, which are common in most structured or semi-structured environments. This segmentation is then used to minimize the amount of parameters necessary to properly create a 3D occupancy model of the surveyed space, thus increasing computational speed and decreasing memory requirements. As the 3D modeling tool, an extension to Hilbert Maps was selected, since it naturally uses a feature-based representation of the environment to achieve real-time performance. Experiments conducted in simulated and real large-scale datasets show a substantial gain in performance, while decreasing the amount of stored information by orders of magnitude without sacrificing accuracy.
DOI:
10.1609/aaai.v31i1.11039
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 31