Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
Track:
AAAI Technical Track: Vision
Downloads:
Abstract:
Approaches to image compression with machine learning now achieve superior performance on the compression rate compared to existing hybrid codecs. The conventional learning-based methods for image compression exploits hyper-prior and spatial context model to facilitate probability estimations. Such models have limitations in modeling long-term dependency and do not fully squeeze out the spatial redundancy in images. In this paper, we propose a coarse-to-fine framework with hierarchical layers of hyper-priors to conduct comprehensive analysis of the image and more effectively reduce spatial redundancy, which improves the rate-distortion performance of image compression significantly. Signal Preserving Hyper Transforms are designed to achieve an in-depth analysis of the latent representation and the Information Aggregation Reconstruction sub-network is proposed to maximally utilize side-information for reconstruction. Experimental results show the effectiveness of the proposed network to efficiently reduce the redundancies in images and improve the rate-distortion performance, especially for high-resolution images. Our project is publicly available at https://huzi96.github.io/coarse-to-fine-compression.html.
DOI:
10.1609/aaai.v34i07.6736
AAAI
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved