Proceedings:
No. 1: Thirty-First AAAI Conference On Artificial Intelligence
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 31
Track:
Machine Learning Methods
Downloads:
Abstract:
In many applications such as recommender systems and multi-label learning the task is to complete a partially observed binary matrix. Such PU learning (positive-unlabeled) problems can be solved by one-class matrix factorization (MF). In practice side information such as user or item features in recommender systems are often available besides the observed positive user-item connections. In this work we consider a generalization of one-class MF so that two types of side information are incorporated and a general convex loss function can be used. The resulting optimization problem is very challenging, but we derive an efficient and effective alternating minimization procedure. Experiments on large-scale multi-label learning and one-class recommender systems demonstrate the effectiveness of our proposed approach.
DOI:
10.1609/aaai.v31i1.10863
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 31