Proceedings:
No. 1: Thirty-First AAAI Conference On Artificial Intelligence
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 31
Track:
Machine Learning Methods
Downloads:
Abstract:
In this paper, we present a framework for fitting multivariate Hawkes processes for large-scale problems, both in the number of events in the observed history n and the number of event types d (i.e. dimensions). The proposed Scalable Low-Rank Hawkes Process (SLRHP) framework introduces a low-rank approximation of the kernel matrix that allows to perform the nonparametric learning of the d2 triggering kernels in at most O(ndr2) operations, where r is the rank of the approximation (r _ d, n). This comes as a major improvement to the existing state-of-the-art inference algorithms that require O(nd2) operations. Furthermore, the low-rank approximation allows SLRHP to learn representative patterns of interaction between event types, which is usually valuable for the analysis of complex processes in real-world networks.
DOI:
10.1609/aaai.v31i1.10846
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 31