Proceedings:
No. 1: Thirty-First AAAI Conference On Artificial Intelligence
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 31
Track:
AAAI Technical Track: Heuristic Search and Optimization
Downloads:
Abstract:
Grid pathfinding, an old AI problem, is central for the development of navigation systems for autonomous agents. A surprising fact about the vast literature on this problem is that very limited neighborhoods have been studied. Indeed, only the 4- and 8-neighborhoods are usually considered, and rarely the 16-neighborhood. This paper describes three contributions that enable the construction of effective grid path planners for extended 2k-neighborhoods. First, we provide a simple recursive definition of the 2k-neighborhood in terms of the 2kÐ1-neighborhood. Second, we derive distance functions, for any k >1, which allow us to propose admissible heurisitics which are perfect for obstacle-free grids. Third, we describe a canonical ordering which allows us to implement a version of A* whose performance scales well when increasing k. Our empirical evaluation shows that the heuristics we propose are superior to the Euclidean distance (ED) when regular A* is used. For grids beyond 64 the overhead of computing the heuristic yields decreased time performance compared to the ED. We found also that a configuration of our A*-based implementation, without canonical orders, is competitive with the "any-angle" path planner Theta$^*$ both in terms of solution quality and runtime.
DOI:
10.1609/aaai.v31i1.10666
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 31