Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 06: AAAI-20 Technical Tracks 6
Track:
AAAI Technical Track: Robotics
Downloads:
Abstract:
Modular robots hold the promise of versatility in that their components can be re-arranged to adapt the robot design to a task at deployment time. Even for the simplest designs, determining the optimal design is exponentially complex due to the number of permutations of ways the modules can be connected. Further, when selecting the design for a given task, there is an additional computational burden in evaluating the capability of each robot, e.g., whether it can reach certain points in the workspace. This work uses deep reinforcement learning to create a search heuristic that allows us to efficiently search the space of modular serial manipulator designs. We show that our algorithm is more computationally efficient in determining robot designs for given tasks in comparison to the current state-of-the-art.
DOI:
10.1609/aaai.v34i06.6611
AAAI
Vol. 34 No. 06: AAAI-20 Technical Tracks 6
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved