Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 06: AAAI-20 Technical Tracks 6
Track:
AAAI Technical Track: Reasoning under Uncertainty
Downloads:
Abstract:
Probabilistic soft logic (PSL) is a statistical relational learning framework that represents complex relational models with weighted first-order logical rules. The weights of the rules in PSL indicate their importance in the model and influence the effectiveness of the model on a given task. Existing weight learning approaches often attempt to learn a set of weights that maximizes some function of data likelihood. However, this does not always translate to optimal performance on a desired domain metric, such as accuracy or F1 score. In this paper, we introduce a new weight learning approach called Bayesian optimization for weight learning (BOWL) based on Gaussian process regression that directly optimizes weights on a chosen domain performance metric. The key to the success of our approach is a novel projection that captures the semantic distance between the possible weight configurations. Our experimental results show that our proposed approach outperforms likelihood-based approaches and yields up to a 10% improvement across a variety of performance metrics. Further, we performed experiments to measure the scalability and robustness of our approach on various realworld datasets.
DOI:
10.1609/aaai.v34i06.6589
AAAI
Vol. 34 No. 06: AAAI-20 Technical Tracks 6
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved