Proceedings:
No. 11: AAAI-21 Technical Tracks 11
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Technical Track on Machine Learning IV
Downloads:
Abstract:
The drastic increase of data quantity often brings the severe decrease of data quality, such as incorrect label annotations. It poses a great challenge for robustly training Deep Neural Networks (DNNs). Existing learning methods with label noise either employ ad-hoc heuristics or restrict to specific noise assumptions. However, more general situations, such as instance-dependent label noise, have not been fully explored, as scarce studies focus on their label corruption process. By categorizing instances into confusing and unconfusing instances, this paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances. The resultant model can be realized by DNNs, where the training procedure is accomplished by employing a novel alternating optimization algorithm. Experiments on datasets with both synthetic and real-world label noise verify the proposed method yields significant improvements on robustness over state-of-the-art counterparts.
DOI:
10.1609/aaai.v35i11.17221
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35