Proceedings:
No. 9: AAAI-22 Technical Tracks 9
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 36
Track:
AAAI Technical Track on Search and Optimization
Downloads:
Abstract:
The maximum k-club problem (MkCP) is an important clique relaxation problem with wide applications. Previous MkCP algorithms only work on small-scale instances and are not applicable for large-scale instances. For solving instances with different scales, this paper develops an efficient local search algorithm named NukCP for the MkCP which mainly includes two novel ideas. First, we propose a dynamic reduction strategy, which makes a good balance between the time efficiency and the precision effectiveness of the upper bound calculation. Second, a stratified threshold configuration checking strategy is designed by giving different priorities for the neighborhood in the different levels. Experiments on a broad range of different scale instances show that NukCP significantly outperforms the state-of-the-art MkCP algorithms on most instances.
DOI:
10.1609/aaai.v36i9.21254
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 36