Proceedings:
No. 1: AAAI-19, IAAI-19, EAAI-20
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 33
Track:
Student Abstract Track
Downloads:
Abstract:
Learning temporal abstractions which are partial solutions to a task and could be reused for solving other tasks is an ingredient that can help agents to plan and learn efficiently. In this work, we tackle this problem in the options framework. We aim to autonomously learn options which are specialized in different state space regions by proposing a notion of interest functions, which generalizes initiation sets from the options framework for function approximation. We build on the option-critic framework to derive policy gradient theorems for interest functions, leading to a new interest-option-critic architecture.
DOI:
10.1609/aaai.v33i01.33019955
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 33