Proceedings:
No. 1: AAAI-19, IAAI-19, EAAI-20
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 33
Track:
Doctoral Consortium Track
Downloads:
Abstract:
This thesis aims to provide a foundation for risk-aware decision making. Decision making under uncertainty is a core capability of an autonomous agent. A cornerstone for with long-term autonomy and safety is risk-aware decision making. A risk-aware model fully accounts for a known set of risks in the environment, with respect to the problem under consideration, and the process of decision making using such a model is risk-aware decision making. Formulating risk-aware models is critical for robust reasoning under uncertainty, since the impact of using less accurate models may be catastrophic in extreme cases due to overly optimistic view of problems. I propose adaptive modeling, a framework that helps balance the trade-off between model simplicity and risk awareness, for different notions of risks, while remaining computationally tractable.
DOI:
10.1609/aaai.v33i01.33019896
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 33