Proceedings:
No. 1: AAAI-19, IAAI-19, EAAI-20
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 33
Track:
IAAI Technical Track: Emerging Papers
Downloads:
Abstract:
The Internet has rich and rapidly increasing sources of high quality educational content. Inferring prerequisite relations between educational concepts is required for modern large-scale online educational technology applications such as personalized recommendations and automatic curriculum creation. We present PREREQ, a new supervised learning method for inferring concept prerequisite relations. PREREQ is designed using latent representations of concepts obtained from the Pairwise Latent Dirichlet Allocation model, and a neural network based on the Siamese network architecture. PREREQ can learn unknown concept prerequisites from course prerequisites and labeled concept prerequisite data. It outperforms state-of-the-art approaches on benchmark datasets and can effectively learn from very less training data. PREREQ can also use unlabeled video playlists, a steadily growing source of training data, to learn concept prerequisites, thus obviating the need for manual annotation of course prerequisites.
DOI:
10.1609/aaai.v33i01.33019589
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 33