Abstract:
Language model pre-training has achieved success in many natural language processing tasks. Existing methods for cross-lingual pre-training adopt Translation Language Model to predict masked words with the concatenation of the source sentence and its target equivalent. In this work, we introduce a novel cross-lingual pre-training method, called Alternating Language Modeling (ALM). It code-switches sentences of different languages rather than simple concatenation, hoping to capture the rich cross-lingual context of words and phrases. More specifically, we randomly substitute source phrases with target translations to create code-switched sentences. Then, we use these code-switched data to train ALM model to learn to predict words of different languages. We evaluate our pre-training ALM on the downstream tasks of machine translation and cross-lingual classification. Experiments show that ALM can outperform the previous pre-training methods on three benchmarks.1

Published Date: 2020-06-02
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved
DOI:
10.1609/aaai.v34i05.6480