Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 05: AAAI-20 Technical Tracks 5
Track:
AAAI Technical Track: Natural Language Processing
Downloads:
Abstract:
Previous neural models on open-domain conversation generation have no effective mechanisms to manage chatting topics, and tend to produce less coherent dialogs. Inspired by the strategies in human-human dialogs, we divide the task of multi-turn open-domain conversation generation into two sub-tasks: explicit goal (chatting about a topic) sequence planning and goal completion by topic elaboration. To this end, we propose a three-layer Knowledge aware Hierarchical Reinforcement Learning based Model (KnowHRL). Specifically, for the first sub-task, the upper-layer policy learns to traverse a knowledge graph (KG) in order to plan a high-level goal sequence towards a good balance between dialog coherence and topic consistency with user interests. For the second sub-task, the middle-layer policy and the lower-layer one work together to produce an in-depth multi-turn conversation about a single topic with a goal-driven generation mechanism. The capability of goal-sequence planning enables chatbots to conduct proactive open-domain conversations towards recommended topics, which has many practical applications. Experiments demonstrate that our model outperforms state of the art baselines in terms of user-interest consistency, dialog coherence, and knowledge accuracy.
DOI:
10.1609/aaai.v34i05.6474
AAAI
Vol. 34 No. 05: AAAI-20 Technical Tracks 5
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved