Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 05: AAAI-20 Technical Tracks 5
Track:
AAAI Technical Track: Natural Language Processing
Downloads:
Abstract:
Existing conversational systems tend to generate generic responses. Recently, Background Based Conversation (BBCs) have been introduced to address this issue. Here, the generated responses are grounded in some background information. The proposed methods for BBCs are able to generate more informative responses, however, they either cannot generate natural responses or have difficulties in locating the right background information. In this paper, we propose a Reference-aware Network (RefNet) to address both issues. Unlike existing methods that generate responses token by token, RefNet incorporates a novel reference decoder that provides an alternative way to learn to directly select a semantic unit (e.g., a span containing complete semantic information) from the background. Experimental results show that RefNet significantly outperforms state-of-the-art methods in terms of both automatic and human evaluations, indicating that RefNet can generate more appropriate and human-like responses.
DOI:
10.1609/aaai.v34i05.6370
AAAI
Vol. 34 No. 05: AAAI-20 Technical Tracks 5
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved