Proceedings:
No. 1: AAAI-19, IAAI-19, EAAI-20
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 33
Track:
AAAI Technical Track: Vision
Downloads:
Abstract:
The task of video grounding, which temporally localizes a natural language description in a video, plays an important role in understanding videos. Existing studies have adopted strategies of sliding window over the entire video or exhaustively ranking all possible clip-sentence pairs in a presegmented video, which inevitably suffer from exhaustively enumerated candidates. To alleviate this problem, we formulate this task as a problem of sequential decision making by learning an agent which regulates the temporal grounding boundaries progressively based on its policy. Specifically, we propose a reinforcement learning based framework improved by multi-task learning and it shows steady performance gains by considering additional supervised boundary information during training. Our proposed framework achieves state-of-the-art performance on ActivityNet’18 DenseCaption dataset (Krishna et al. 2017) and Charades-STA dataset (Sigurdsson et al. 2016; Gao et al. 2017) while observing only 10 or less clips per video.
DOI:
10.1609/aaai.v33i01.33018393
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 33