Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 05: AAAI-20 Technical Tracks 5
Track:
AAAI Technical Track: Natural Language Processing
Downloads:
Abstract:
Text classification is a basic task in natural language processing, but the small character perturbations in words can greatly decrease the effectiveness of text classification models, which is called character-level adversarial example attack. There are two main challenges in character-level adversarial examples defense, which are out-of-vocabulary words in word embedding model and the distribution difference between training and inference. Both of these two challenges make the character-level adversarial examples difficult to defend. In this paper, we propose a framework which jointly uses the character embedding and the adversarial stability training to overcome these two challenges. Our experimental results on five text classification data sets show that the models based on our framework can effectively defend character-level adversarial examples, and our models can defend 93.19% gradient-based adversarial examples and 94.83% natural adversarial examples, which outperforms the state-of-the-art defense models.
DOI:
10.1609/aaai.v34i05.6356
AAAI
Vol. 34 No. 05: AAAI-20 Technical Tracks 5
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved