Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 05: AAAI-20 Technical Tracks 5
Track:
AAAI Technical Track: Natural Language Processing
Downloads:
Abstract:
Neural semantic parsers usually generate meaning representation tokens from natural language tokens via an encoder-decoder model. However, there is often a vocabulary-mismatch problem between natural language utterances and logical forms. That is, one word maps to several atomic logical tokens, which need to be handled as a whole, rather than individual logical tokens at multiple steps. In this paper, we propose that the vocabulary-mismatch problem can be effectively resolved by leveraging appropriate logical tokens. Specifically, we exploit macro actions, which are of the same granularity of words/phrases, and allow the model to learn mappings from frequent phrases to corresponding sub-structures of meaning representation. Furthermore, macro actions are compact, and therefore utilizing them can significantly reduce the search space, which brings a great benefit to weakly supervised semantic parsing. Experiments show that our method leads to substantial performance improvement on three benchmarks, in both supervised and weakly supervised settings.
DOI:
10.1609/aaai.v34i05.6253
AAAI
Vol. 34 No. 05: AAAI-20 Technical Tracks 5
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved