Proceedings:
No. 1: AAAI-19, IAAI-19, EAAI-20
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 33
Track:
AAAI Technical Track: Natural Language Processing
Downloads:
Abstract:
Transfer learning for deep neural networks has achieved great success in many text classification applications. A simple yet effective transfer learning method is to fine-tune the pretrained model parameters. Previous fine-tuning works mainly focus on the pre-training stage and investigate how to pretrain a set of parameters that can help the target task most. In this paper, we propose an Instance Weighting based Finetuning (IW-Fit) method, which revises the fine-tuning stage to improve the final performance on the target domain. IW-Fit adjusts instance weights at each fine-tuning epoch dynamically to accomplish two goals: 1) identify and learn the specific knowledge of the target domain effectively; 2) well preserve the shared knowledge between the source and the target domains. The designed instance weighting metrics used in IW-Fit are model-agnostic, which are easy to implement for general DNN-based classifiers. Experimental results show that IW-Fit can consistently improve the classification accuracy on the target domain.
DOI:
10.1609/aaai.v33i01.33017241
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 33