Proceedings:
No. 1: AAAI-19, IAAI-19, EAAI-20
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 33
Track:
AAAI Technical Track: Natural Language Processing
Downloads:
Abstract:
We investigate the task of distantly supervised joint entity relation extraction. It’s known that training with distant supervision will suffer from noisy samples. To tackle the problem, we propose to adapt a small manually labelled dataset to the large automatically generated dataset. By developing a novel adaptation algorithm, we are able to transfer the high quality but heterogeneous entity relation annotations in a robust and consistent way. Experiments on the benchmark NYT dataset show that our approach significantly outperforms state-ofthe-art methods.
DOI:
10.1609/aaai.v33i01.33017039
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 33