Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
The increasing of public neuroimaging datasets opens a door to analyzing homogeneous human brain conditions across datasets by transfer learning (TL). However, neuroimaging data are high-dimensional, noisy, and with small sample sizes. It is challenging to learn a robust model for data across different cognitive experiments and subjects. A recent TL approach minimizes domain dependence to learn common cross-domain features, via the Hilbert-Schmidt Independence Criterion (HSIC). Inspired by this approach and the multi-source TL theory, we propose a Side Information Dependence Regularization (SIDeR) learning framework for TL in brain condition decoding. Specifically, SIDeR simultaneously minimizes the empirical risk and the statistical dependence on the domain side information, to reduce the theoretical generalization error bound. We construct 17 brain decoding TL tasks using public neuroimaging data for evaluation. Comprehensive experiments validate the superiority of SIDeR over ten competing methods, particularly an average improvement of 15.6% on the TL tasks with multi-source experiments.
DOI:
10.1609/aaai.v34i04.6179
AAAI
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved