Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
We investigate the piecewise-stationary combinatorial semi-bandit problem. Compared to the original combinatorial semi-bandit problem, our setting assumes the reward distributions of base arms may change in a piecewise-stationary manner at unknown time steps. We propose an algorithm, GLR-CUCB, which incorporates an efficient combinatorial semi-bandit algorithm, CUCB, with an almost parameter-free change-point detector, the Generalized Likelihood Ratio Test (GLRT). Our analysis shows that the regret of GLR-CUCB is upper bounded by O(√NKT log T), where N is the number of piecewise-stationary segments, K is the number of base arms, and T is the number of time steps. As a complement, we also derive a nearly matching regret lower bound on the order of Ω(√NKT), for both piecewise-stationary multi-armed bandits and combinatorial semi-bandits, using information-theoretic techniques and judiciously constructed piecewise-stationary bandit instances. Our lower bound is tighter than the best available regret lower bound, which is Ω(√T). Numerical experiments on both synthetic and real-world datasets demonstrate the superiority of GLR-CUCB compared to other state-of-the-art algorithms.
DOI:
10.1609/aaai.v34i04.6176
AAAI
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved