Proceedings:
No. 1: AAAI-19, IAAI-19, EAAI-20
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 33
Track:
AAAI Technical Track: Natural Language Processing
Downloads:
Abstract:
Emotion detection in conversations is a necessary step for a number of applications, including opinion mining over chat history, social media threads, debates, argumentation mining, understanding consumer feedback in live conversations, and so on. Currently systems do not treat the parties in the conversation individually by adapting to the speaker of each utterance. In this paper, we describe a new method based on recurrent neural networks that keeps track of the individual party states throughout the conversation and uses this information for emotion classification. Our model outperforms the state-of-the-art by a significant margin on two different datasets.
DOI:
10.1609/aaai.v33i01.33016818
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 33