Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
Recently, imbalanced data classification has received much attention due to its wide applications. In the literature, existing researches have attempted to improve the classification performance by considering various factors such as the imbalanced distribution, cost-sensitive learning, data space improvement, and ensemble learning. Nevertheless, most of the existing methods focus on only part of these main aspects/factors. In this work, we propose a novel imbalanced data classification model that considers all these main aspects. To evaluate the performance of our proposed model, we have conducted experiments based on 14 public datasets. The results show that our model outperforms the state-of-the-art methods in terms of recall, G-mean, F-measure and AUC.
DOI:
10.1609/aaai.v34i04.6145
AAAI
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved