Proceedings:
No. 7: AAAI-21 Technical Tracks 7
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Technical Track on Knowledge Representation and Reasoning
Downloads:
Abstract:
Techniques for learning logic programs from data typically rely on language bias mechanisms to restrict the hypothesis space. These methods are therefore limited by the user's ability to tune them such that the hypothesis space is simultaneously large enough to include the target program but small enough to admit a tractable search. We propose a technique to learn Datalog programs from input-output examples without requiring the user to specify any language bias. It employs an evolutionary search strategy that mutates candidate programs and evaluates their fitness on the examples using an off-the-shelf Datalog interpreter. We have implemented our approach in a tool called GenSynth and evaluate it on diverse tasks from knowledge discovery, program analysis, and relational queries. Our experiments show that GenSynth can learn correct programs from few examples, including for tasks that require recursion and invented predicates, and is robust to noise.
DOI:
10.1609/aaai.v35i7.16799
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35