Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
Deep learning has shown its great promise in various biomedical image segmentation tasks. Existing models are typically based on U-Net and rely on an encoder-decoder architecture with stacked local operators to aggregate long-range information gradually. However, only using the local operators limits the efficiency and effectiveness. In this work, we propose the non-local U-Nets, which are equipped with flexible global aggregation blocks, for biomedical image segmentation. These blocks can be inserted into U-Net as size-preserving processes, as well as down-sampling and up-sampling layers. We perform thorough experiments on the 3D multimodality isointense infant brain MR image segmentation task to evaluate the non-local U-Nets. Results show that our proposed models achieve top performances with fewer parameters and faster computation.
DOI:
10.1609/aaai.v34i04.6100
AAAI
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved