Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
We consider the problem of learning linear prediction models with model misspecification bias. In such case, the collinearity among input variables may inflate the error of parameter estimation, resulting in instability of prediction results when training and test distributions do not match. In this paper we theoretically analyze this fundamental problem and propose a sample reweighting method that reduces collinearity among input variables. Our method can be seen as a pretreatment of data to improve the condition of design matrix, and it can then be combined with any standard learning method for parameter estimation and variable selection. Empirical studies on both simulation and real datasets demonstrate the effectiveness of our method in terms of more stable performance across different distributed data.
DOI:
10.1609/aaai.v34i04.6024
AAAI
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved