Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
Making an erroneous decision may cause serious results in diverse mission-critical tasks such as medical diagnosis and bioinformatics. Previous work focuses on classification with a reject option, i.e., abstain rather than classify an instance of low confidence. Most mission-critical tasks are always accompanied with class imbalance and cost sensitivity, where AUC has been shown a preferable measure than accuracy in classification. In this work, we propose the framework of AUC optimization with a reject option, and the basic idea is to withhold the decision of ranking a pair of positive and negative instances with a lower cost, rather than mis-ranking. We obtain the Bayes optimal solution for ranking, and learn the reject function and score function for ranking, simultaneously. An online algorithm has been developed for AUC optimization with a reject option, by considering the convex relaxation and plug-in rule. We verify, both theoretically and empirically, the effectiveness of the proposed algorithm.
DOI:
10.1609/aaai.v34i04.6023
AAAI
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved