Abstract:
We propose a new variational family for Bayesian neural networks. We decompose the variational posterior into two components, where the radial component captures the strength of each neuron in terms of its magnitude; while the directional component captures the statistical dependencies among the weight parameters. The dependencies learned via the directional density provide better modeling performance compared to the widely-used Gaussian mean-field-type variational family. In addition, the strength of input and output neurons learned via our posterior provides a structured way to compress neural networks. Indeed, experiments show that our variational family improves predictive performance and yields compressed networks simultaneously.

Published Date: 2020-06-02
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved
DOI:
10.1609/aaai.v34i04.5976