Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
Recurrent neural networks (RNNs) have been widely used to deal with sequence learning problems. The input-dependent transition function, which folds new observations into hidden states to sequentially construct fixed-length representations of arbitrary-length sequences, plays a critical role in RNNs. Based on single space composition, transition functions in existing RNNs often have difficulty in capturing complicated long-range dependencies. In this paper, we introduce a new Multi-zone Unit (MZU) for RNNs. The key idea is to design a transition function that is capable of modeling multiple space composition. The MZU consists of three components: zone generation, zone composition, and zone aggregation. Experimental results on multiple datasets of the character-level language modeling task and the aspect-based sentiment analysis task demonstrate the superiority of the MZU.
DOI:
10.1609/aaai.v34i04.5958
AAAI
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved