Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
Recent studies have highlighted audio adversarial examples as a ubiquitous threat to state-of-the-art automatic speech recognition systems. Thorough studies on how to effectively generate adversarial examples are essential to prevent potential attacks. Despite many research on this, the efficiency and the robustness of existing works are not yet satisfactory. In this paper, we propose weighted-sampling audio adversarial examples, focusing on the numbers and the weights of distortion to reinforce the attack. Further, we apply a denoising method in the loss function to make the adversarial attack more imperceptible. Experiments show that our method is the first in the field to generate audio adversarial examples with low noise and high audio robustness at the minute time-consuming level 1.
DOI:
10.1609/aaai.v34i04.5928
AAAI
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved