Proceedings:
No. 1: AAAI-19, IAAI-19, EAAI-20
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 33
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
Learning-based methods suffer from a deficiency of clean annotations, especially in biomedical segmentation. Although many semi-supervised methods have been proposed to provide extra training data, automatically generated labels are usually too noisy to retrain models effectively. In this paper, we propose a Two-Stream Mutual Attention Network (TSMAN) that weakens the influence of back-propagated gradients caused by incorrect labels, thereby rendering the network robust to unclean data. The proposed TSMAN consists of two sub-networks that are connected by three types of attention models in different layers. The target of each attention model is to indicate potentially incorrect gradients in a certain layer for both sub-networks by analyzing their inferred features using the same input. In order to achieve this purpose, the attention models are designed based on the propagation analysis of noisy gradients at different layers. This allows the attention models to effectively discover incorrect labels and weaken their influence during parameter updating process. By exchanging multi-level features within two-stream architecture, the effects of noisy labels in each sub-network are reduced by decreasing the noisy gradients. Furthermore, a hierarchical distillation is developed to provide reliable pseudo labels for unlabelded data, which further boosts the performance of TSMAN. The experiments using both HVSMR 2016 and BRATS 2015 benchmarks demonstrate that our semi-supervised learning framework surpasses the state-of-the-art fully-supervised results.
DOI:
10.1609/aaai.v33i01.33014578
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 33