Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
Combinatorial optimization problems are ubiquitous in artificial intelligence. Designing the underlying models, however, requires substantial expertise, which is a limiting factor in practice. The models typically consist of hard and soft constraints, or combine hard constraints with a preference function. We introduce a novel setting for learning combinatorial optimisation problems from contextual examples. These positive and negative examples show – in a particular context – whether the solutions are good enough or not. We develop our framework using the MAX-SAT formalism. We provide learnability results within the realizable and agnostic settings, as well as hassle, an implementation based on syntax-guided synthesis and showcase its promise on recovering synthetic and benchmark instances from examples.
DOI:
10.1609/aaai.v34i04.5877
AAAI
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved