Abstract:
This paper proposes a new classification model called logistic circuits. On MNIST and Fashion datasets, our learning algorithm outperforms neural networks that have an order of magnitude more parameters. Yet, logistic circuits have a distinct origin in symbolic AI, forming a discriminative counterpart to probabilistic-logical circuits such as ACs, SPNs, and PSDDs. We show that parameter learning for logistic circuits is convex optimization, and that a simple local search algorithm can induce strong model structures from data.
DOI:
10.1609/aaai.v33i01.33014277