Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
This paper develops new methods to recover the missing entries of a high-rank or even full-rank matrix when the intrinsic dimension of the data is low compared to the ambient dimension. Specifically, we assume that the columns of a matrix are generated by polynomials acting on a low-dimensional intrinsic variable, and wish to recover the missing entries under this assumption. We show that we can identify the complete matrix of minimum intrinsic dimension by minimizing the rank of the matrix in a high dimensional feature space. We develop a new formulation of the resulting problem using the kernel trick together with a new relaxation of the rank objective, and propose an efficient optimization method. We also show how to use our methods to complete data drawn from multiple nonlinear manifolds. Comparative studies on synthetic data, subspace clustering with missing data, motion capture data recovery, and transductive learning verify the superiority of our methods over the state-of-the-art.
DOI:
10.1609/aaai.v34i04.5796
AAAI
Vol. 34 No. 04: AAAI-20 Technical Tracks 4
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved