Proceedings:
No. 4: AAAI-22 Technical Tracks 4
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 36
Track:
AAAI Technical Track on Constraint Satisfaction and Optimization
Downloads:
Abstract:
The k-undercover Boolean matrix factorization problem aims to approximate a m×n Boolean matrix X as the Boolean product of an m×k and a k×n matrices A◦B such that X is a cover of A◦B, i.e., no representation error is allowed on the 0’s entries of the matrix X. To infer an optimal and “block-optimal” k-undercover, we propose two exact methods based on MaxSAT encodings. From a theoretical standpoint, we prove that our method of inferring “block-optimal” k-undercover is a (1 - 1/e) ≈ 0.632 approximation for the optimal k-undercover problem. From a practical standpoint, experimental results indicate that our “block-optimal” k-undercover algorithm outperforms the state-of-the-art even when compared with algorithms for the more general k-undercover Boolean Matrix Factorization problem for which only minimizing reconstruction error is required.
DOI:
10.1609/aaai.v36i4.20280
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 36