Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 03: AAAI-20 Technical Tracks 3
Track:
AAAI Technical Track: Knowledge Representation and Reasoning
Downloads:
Abstract:
Expressing incomplete knowledge in abstract argumentation frameworks (AFs) through incomplete AFs has recently received noticeable attention. However, algorithmic aspects of deciding acceptance in incomplete AFs are still under-developed. We address this current shortcoming by developing algorithms for NP-hard and coNP-hard variants of acceptance problems over incomplete AFs via harnessing Boolean satisfiability (SAT) solvers. Focusing on nonempty conflict-free or admissible sets and on stable extensions, we also provide new complexity results for a refined variant of skeptical acceptance in incomplete AFs, ranging from polynomial-time computability to hardness for the second level of the polynomial hierarchy. Furthermore, central to the proposed SAT-based counterexample-guided abstraction refinement approach for the second-level problem variants, we establish conditions for redundant atomic changes to incomplete AFs from the perspective of preserving extensions. We show empirically that the resulting SAT-based approach for incomplete AFs scales at least as well as existing SAT-based approaches to deciding acceptance in AFs.
DOI:
10.1609/aaai.v34i03.5686
AAAI
Vol. 34 No. 03: AAAI-20 Technical Tracks 3
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved