Proceedings:
Proceedings Of The Sixth International Conference On Artificial Intelligence Planning And Scheduling
Volume
Issue:
Proceedings Of The Sixth International Conference On Artificial Intelligence Planning And Scheduling
Track:
Contents
Downloads:
Abstract:
This paper invents symbolic pattern databases (SPDB) to combine two influencing aspects for recent progress in domain-independent action planning, namely heuristic search and model checking. SPDBs are off-line computed dictionaries, generated in symbolic backward traversals of automatically inferred planning space abstractions. The entries of SPDBs serve as heuristic estimates to accelerate explicit and symbolic, approximate and optimal heuristic search planners. Selected experiments highlight that the symbolic representation yields much larger and more accurate pattern databases than the ones generated with explicit methods.
AIPS
Proceedings Of The Sixth International Conference On Artificial Intelligence Planning And Scheduling