Proceedings:
No. 3: AAAI-22 Technical Tracks 3
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 36
Track:
AAAI Technical Track on Computer Vision III
Downloads:
Abstract:
Multi-modal person Re-ID introduces more complementary information to assist the traditional Re-ID task. Existing multi-modal methods ignore the importance of modality-specific information in the feature fusion stage. To this end, we propose a novel method to boost modality-specific representations for multi-modal person Re-ID: Interact, Embed, and EnlargE (IEEE). First, we propose a cross-modal interacting module to exchange useful information between different modalities in the feature extraction phase. Second, we propose a relation-based embedding module to enhance the richness of feature descriptors by embedding the global feature into the fine-grained local information. Finally, we propose multi-modal margin loss to force the network to learn modality-specific information for each modality by enlarging the intra-class discrepancy. Superior performance on multi-modal Re-ID dataset RGBNT201 and three constructed Re-ID datasets validate the effectiveness of the proposed method compared with the state-of-the-art approaches.
DOI:
10.1609/aaai.v36i3.20165
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 36