Proceedings:
No. 3: AAAI-22 Technical Tracks 3
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 36
Track:
AAAI Technical Track on Computer Vision III
Downloads:
Abstract:
The high efficiency in computation and storage makes hashing (including binary hashing and quantization) a common strategy in large-scale retrieval systems. To alleviate the reliance on expensive annotations, unsupervised deep hashing becomes an important research problem. This paper provides a novel solution to unsupervised deep quantization, namely Contrastive Quantization with Code Memory (MeCoQ). Different from existing reconstruction-based strategies, we learn unsupervised binary descriptors by contrastive learning, which can better capture discriminative visual semantics. Besides, we uncover that codeword diversity regularization is critical to prevent contrastive learning-based quantization from model degeneration. Moreover, we introduce a novel quantization code memory module that boosts contrastive learning with lower feature drift than conventional feature memories. Extensive experiments on benchmark datasets show that MeCoQ outperforms state-of-the-art methods. Code and configurations are publicly released.
DOI:
10.1609/aaai.v36i3.20147
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 36